Abstract
The photovoltaic performance of hybrid solar cell based on poly(3-hexylthiophene) (P3HT) and size-tunable CdSe quantum dots is analyzed by combination of optical and electrical simulations. The employed optical and electrical models describe the dependency of solar cell characteristics on CdSe QDs diameter and active layer thickness. The device performance improvement is observed by increasing CdSe QDs diameter from 2.3 nm to 8.3 nm. The short circuit current density (Jsc) shows significant ascending trend by QDs diameter which is due to electron mobility (μn) and absorption range enhancement. However, the maximum achievable open circuit voltage (VOC) decreases by QDs size growth, VOC shows ascending trend with CdSe QDs diameter increase, because of the higher dissociation probability and lesser recombination rate for larger nanocrystals. As the electron mobility proportionally increases by CdSe QDs size, the performance dependency on the charge mobility is studied. Results show that by growing the size of CdSe QDs, charge extraction is dominant in the competition between recombination rate increase and charge extraction increase.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have