Abstract

2D slotted diamond‐based photonic crystals (PhCs) with Q factors up to 6500 are fabricated and optically characterized at 1550 nm in order to probe surface molecular modifications. This study focuses on the simplest surface modifications that can modify the diamond PhC optical properties, namely, hydrogenation and oxidation. Depending on the chemical surface termination, these diamond PhCs exhibit a strong modification of their spectral features. When the surface is tuned from oxidized to hydrogenated, a resonance wavelength shift of the cavity occurs and is accompanied by a decrease of the Q factor. Moreover, experimental evidence is given that this phenomenon is reversible, as the initial value of the Q factor is recovered when the surface is re‐oxidized. This is attributed to the subsurface conductive layer that is due to transfer doping in hydrogenated diamond and which is absent from oxidized diamond. Thanks to 3D finite differences in time domain (FDTD) simulations, an estimate of the effective refractive index of the surface conductive layer at 1.5 μm is given as a function of its thickness. This result highlights the high sensitivity of slotted diamond PhC and the importance of surface control for biosensing with diamond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.