Abstract
Using an eight-band k ⋅ p model Hamiltonian with the Burt–Foreman envelope function theory, we have investigated the optical absorption of both linearly and circularly polarized light, as well as related phenomena in InAs/GaSb broken-gap quantum wells grown along the [0 0 1] direction, with emphasis on the effects of electron–hole hybridization and the various symmetry-breaking mechanisms such as structural inversion asymmetry, bulk inversion asymmetry and interface Hamiltonian. The optical matrix elements exhibit unusual angular dependence in close connection with the spin-flip transitions which are originally forbidden. The spin split of the 2e subband results in two profound absorption peaks for the 1hh–2e transition for both linearly polarized and circularly polarized light. A large lateral optical anisotropy appears in the absorption coefficient of linearly polarized light, which can reach almost 100% with a reducing thickness of the quantum well. For the absorption of circularly polarized light, we found a large enhancement of electron spin polarization in the upper 2e subband, which was generally considered as forbidden if the polarization is along the direction perpendicular to the plane-of-light incidence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.