Abstract
We investigate in detail the optical anisotropy of absorption of linearly polarized light in InAs/GaSb quantum wells grown on GaSb along the [001] direction, which can be used as an active region of different laser structures. The energy level positions, the wave functions, the optical matrix elements, and the absorption coefficients are calculated using the eight-band k center dot p model and the Burt-Foreman envelope function theory. In these calculations, the Schrodinger and Poisson equations are solved self-consistently taking the lattice-mismatched strain into account. We find that a realistic Hamiltonian, which has the C (2v) symmetry, results in considerable anisotropy of optical matrix elements for different directions of light polarization and different directions of the initial-state in-plane wave vector, including low-symmetry directions. We trace how the optical matrix elements and absorption are modified when spin-orbit interaction and important symmetry breaking mechanisms are taken into account (structural inversion asymmetry, bulk inversion asymmetry, and interface Hamiltonian). These mechanisms result in an almost 100% anisotropy of the absorption coefficients as the light polarization vector rotates in the plane of the structure and in a plane normal to the interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.