Abstract
We propose an underwater optical signal detection system based on multi-dimensional integral imaging with spatially distributed multiple light sources and four-dimensional (4D) spatial-temporal correlation. We demonstrate our system for the detection of optical signals in turbid water. A 4D optical signal is generated from a three-dimensional (3D) spatial distribution of underwater light sources, which are temporally encoded using spread spectrum techniques. The optical signals are captured by an array of cameras, and 3D integral imaging reconstruction is performed, followed by multi-dimensional correlation to detect the optical signal. Inclusion of multiple light sources located at different depths allows for successful signal detection at turbidity levels not feasible using only a single light source. We consider the proposed system under varied turbidity levels using both Pseudorandom and Gold Codes for temporal signal coding. We also compare the effectiveness of the proposed underwater optical signal detection system to a similar system using only a single light source and compare between conventional and integral imaging-based signal detection. The underwater signal detection capabilities are measured through performance-based metrics such as receiver operating characteristic (ROC) curves, the area under the curve (AUC), and the number of detection errors. Furthermore, statistical analysis, including Kullback-Leibler divergence and Bhattacharya distance, shows improved performance of the proposed multi-source integral imaging underwater system. The proposed integral-imaging based approach is shown to significantly outperform conventional imaging-based methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.