Abstract

Many methods for solving optimization problems, whether direct or indirect, rely upon gradient information and therefore may converge to a local optimum. Global optimization methods like Evolutionary algorithms, overcome this problem although these techniques are computationally expensive due to slow nature of the evolutionary process. In this work, a new concept is investigated to accelerate the particle swarm optimization. The opposition-based PSO uses the concept of opposite number to create a new population during the learning process to improve the convergence rate of generalization performance of the beta basis function neural network. The proposed algorithm uses the dichotomy research to determine the target solution. Detailed performance comparison of OPSO-BBFNN with learning algorithm on benchmarks problems drawn from regression and time series prediction area. The results show that the OPSO-BBFNN produces a better generalization performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.