Abstract
We have previously shown that transforming growth factor-beta 1 (TGF beta 1) mRNA is consistently overexpressed in squamous cell carcinomas relative to normal mouse skin. Here we show that 92-kDa type IV collagenase (matrix metalloproteinase) (MMP-9) mRNA was likewise progressively overexpressed during mouse skin carcinogenesis. To determine if overexpression of MMP-9 and TGF beta 1 are linked, we stably transfected a bioactive TGF beta 1 into a mouse skin squamous cell carcinoma cell line (CH72), which resulted in about twofold to three-fold higher levels of secreted active TGF beta 1. Active TGF beta 1-transfected cells grew only slightly, but not significantly, more slowly in vitro and in vivo than vector-only transfectants. Two clones overexpressing active TGF beta 1 secreted much reduced levels of MMP-9 activity, as determined by zymogram analyses. However, treatment of these clones with 40 pM exogenous TGF beta 1 for 48 h enhanced secretion of MMP-9 activity. Constitutive mRNA expression of MMP-9 was reduced twofold to 70-fold in five untreated active TGF beta 1-transfected clones relative to the other transfectants. In contrast, treatment with 40 pM exogenous TGF beta 1 induced MMP-9 mRNA expression in a time-dependent fashion, from twofold to fourfold after 4 h to a maximum of 12- to 19-fold after 24-48 h. Induction of MMP-9 mRNA was dose dependent at TGF beta 1 concentrations of 4-400 pM. Thus, stable transfection of bioactive TGF beta 1 downregulated whereas exogenous TGF beta 1 treatment upregulated MMP-9 activity and expression. Treatment of transfectants with a neutralizing TGF beta 1 antibody slightly downregulated constitutive MMP-9 mRNA (20-30%) but completely blocked induction by exogenous TGF beta 1. Thus, the effect of TGF beta 1 transfection was not due to secreted TGF beta 1 but may have been a secondary effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.