Abstract

Thromboxane (TX) stimulation of fibronectin (FN) synthesis in mesangial cells (MC) is dependent on protein kinase C (PKC)-mediated increases in transforming growth factor beta (TGF beta), and is suppressed by increases in cellular cGMP. The current studies evaluate the role of cGMP-dependent and -independent actions of nitric oxide (NO) in modulating the responses of MC to the TX analogue U46619. TX-stimulated increases in PKC activity, TGF beta, and FN synthesis in MC were suppressed by either 8-Br-PET-cGMP or the NO donor S-nitroso-N-acetylpenicillamine (SNAP). By contrast, NO, but not cGMP, inhibited basal PKC activity, TGF beta bioactivity and FN synthesis. The cGMP-dependent protein kinase 1-alpha inhibitor 8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphorothioate (Rp) restored the PKC, TGF beta, and the FN synthetic responses to TX when added to MC before exposure of the cells to either cGMP or SNAP. However, neither Rp nor the guanylate cyclase inhibitor Ly83583 significantly altered SNAP inhibition of basal PKC. In addition, Rp failed to alter the decreases in basal TGF beta bioactivity and FN synthesis seen in the presence of SNAP. In contrast to the FN response to U46619, cGMP and SNAP did not affect the stimulation of FN synthesis by exogenous TGF beta. The later findings are consistent with inhibitory actions of NO and cGMP at, or proximal to, U46619-induced increases in TGF beta in the suppression of TX-signaled increases in FN synthesis. Thus, NO depresses basal PKC and TGF beta bioactivity in MC by mechanisms that are largely independent of cGMP, whereas NO inhibition of these MC responses to TX is mediated primarily by increases in cGMP and activation of protein kinase 1-alpha.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.