Abstract

Inertial focusing is the migration of particles in fluid toward equilibrium, where current theory predicts that shear-induced and wall-induced lift forces are balanced. First reported in 1961, this Segre-Silberberg effect is particularly useful for microfluidic isolation of cells and particles. Interestingly, recent work demonstrated particle focusing at high Reynolds numbers that cannot be explained by current theory. In this work, we show that non-monotonous velocity profiles, such as those developed in curved channels, create peripheral velocity maxima in which opposing shear-induced forces dominate over wall effects. Similarly, entry effects amplified in high Reynolds flow produce an equivalent trapping mechanism in short, straight channels. This focusing mechanism in the developing flow regime enables a 10-fold miniaturization of inertial focusing devices, while our model corrects long-standing misconceptions about the nature of mechanical forces governing inertial focusing in curved channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call