Abstract

Intravenous (i.v.) injection of the antidiabetic drug metformin rapidly lowers mean arterial pressure (MAP) in spontaneously hypertensive rats (SHR). However, if autonomic ganglia or alpha-adrenoceptors are first blocked then metformin rapidly raises MAP in SHR. This study was conducted to further characterize the adrenergic mechanisms of these opposing i.v. actions of the drug. Conscious, undisturbed female SHR with indwelling vascular catheters were used to measure acute effects of i.v. metformin (100 mg/kg; before and after sustained ganglionic blockade, GB, with chlorisondamine, 5 mg/kg) on: (1) circulating levels of catecholamines, (2) MAP after pharmacologic modulation of beta- as well as alpha-adrenoceptors and (3) all the above in the absence as well as presence of the adrenal medulla. Plasma norepinephrine (NE) and epinephrine (E) levels (pg/ml) were rapidly increased by i.v. metformin (8 SHR, p < 0.05) both before GB (delta NE = +146 +/- 41; delta E = +119 +/- 31) and after GB (delta NE = +79 +/- 24; delta E = +120 +/- 32). Similar increases in plasma NE (though not E) were seen in SHR without adrenal medullae. Blockade of beta-adrenoceptors with propranolol (pro; 3 mg/kg, 8 SHR) enhanced the rapid depressor response to i.v. metformin before GB (delta MAP, mmHg: -38 +/- 4 with pro vs -17 +/- 3 without pro; p < 0.05) and attenuated the rapid pressor response to i.v. metformin after GB (delta MAP, mmHg: +8 +/- 3 with pro vs +30 +/- 4 without pro; p < 0.05). Results were similar in SHR without adrenal medullae. Finally, if baseline MAP under GB was raised back to hypertensive levels with i.v. infusion of either NE or phenylephrine then i.v. metformin did not raise but rather reduced MAP in SHR. The acute depressor action of i.v. metformin in female SHR (1) is most likely due to a direct vasodilator action which includes inhibition of alpha-receptor-mediated vasoconstriction and (2) is buffered by an acute beta-receptor-mediated pressor action likely due to a direct metformin-induced release of NE from postganglionic sympathetic nerve endings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call