Abstract

Efficiency of food and nutrient (including energy) use are considered the key factors in the economic and environmental performance of livestock systems. The aim of this paper is to consider the basis of genetic variation in the components that constitute dietary nutrient efficiency; and to conclude whether there would be benefit, in any relevant terms, in including these components in breeding programmes that aim to improve nutrient efficiency within pig and poultry systems of production. The components considered are (i) external, pre-ingestion losses, such as food spillage and its relation to feeding behaviour traits, (ii) digestive efficiency, (iii) maintenance requirements, (iv) net efficiency of energy and nutrient utilisation and (v) partitioning of scarce resources within productive and between productive and fitness functions. It is concluded that opportunities to exploit genetic variation exist mainly in the potential to improve the digestive efficiency of pigs and to reduce the maintenance requirements for resources mainly in hens, but also potentially in pigs. Current evidence suggests that there are very weak genetic and phenotypic correlations between components of feeding behaviour and productive traits, and little genetic variation in the net efficiency of nutrient utilisation among poultry and pig genotypes. The implication of the latter is that there would be little exploitable genetic variation in the partitioning of scarce nutrients between productive functions. Currently, there is a lack of understanding of the genetic basis of the partitioning of scarce nutrients between productive and fitness functions, and how this may impact upon the efficiency of nutrient use in pig and poultry systems. This is an area of research to which further effort might usefully be devoted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call