Abstract

Base Transceiver Station (BTS) is a gear to aid the wireless communication between the mobile phone and the network in a telecommunication system. BTS is supplied by the grid and a diesel generator is used as an additional power source to cater during grid interruption. The battery backup ensures the continuous supply to loads in BTS during the transition of supply from grid to diesel generator during interruption. Electric vehicles and charging stations are complementary merchandise so that electric vehicle's charging stations are need to establish everywhere similar to fuel filling stations at present. Installation of new EV charging stations required land at desired locations and ultimately increase the high capital cost. One of the alternative solution is to utilize the Base Transceiver Station (BTS). Converting the existing BTS to EV charging stations avoids congestion in charging station at city/urban areas. Nowadays most of the mobile phone operators are undergo in huge losses due to competitions and they spent significant expense on capital and maintenance cost on BTS. Hence the proposed solution of converting BTS to EV charging stations gives a great relief in the expenditure for the cellular companies. In addition to that, following are find to the benefits, utilizing existing -48 V supply of BTS, Export power to grid which give additional revenue generation for mobile phone operator, minimizing the usage of DGs, avoiding the acquirement of land for establishing the new infrastructure for EV charging stations. When diesel generator (DG) is used as the additional power source in BTS the sluggish transition of supply to loads occur during the absence of grid. Further, the cost for capital and maintenance and CO 2 emission are increases. The combination of solar PV source, battery and energy management algorithm facilitates the opportunity to save the electricity cost by exporting excess power from PV source to grid during non-accessing period of electric vehicles. Here the energy management system which comprises of 1 kW grid connected solar PV system for the BTS and the Control Algorithm is proposed to overcome the various issues. In the energy management system, solar PV array connected as a source, battery and grid are act as either source or sink. A 1 kW grid connected solar PV system-based EMS is modeled and simulated using MATLAB/Simulink tool and the results are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call