Abstract

This study focuses on the Barind tract, a drought prone area situated in the north-west region of Bangladesh where inadequate rainfall and limited surface water have created high dependence on groundwater for irrigation and other purposes, leading to significant declines in groundwater level. Managed aquifer recharge (MAR) offers a potential solution to restore groundwater levels. This study sets out to identify the opportunities and challenges for implementing MAR in the Barind tract. To accomplish this aim, different data sets including bore log lithology, rainfall, groundwater levels, information about re-excavated ponds, dighis, kharies, beels, check dams, rubber dams, dug wells and other necessary information were collected from the Barind Multipurpose Development Authority (BMDA) and other sources and analyzed. Major opportunities for MAR are identified for about 2000 km of re-excavated kharies (canals) containing about 750 check dams, more than 3000 re-excavated ponds, a number of beels (comparatively large marshes) and other water bodies which are used to conserve runoff storm water for supplementary irrigation. The conserved water can be used for groundwater recharge and subsequently abstracted for irrigation. Furthermore, roof-top rain water from buildings can also be used for groundwater recharge purposes. In contrast, the major challenges include the high turbidity of storm water runoff leading to clogging of MAR structures, inadequacy of conventional direct surface methods of recharge due to the presence of a 15 m or more thick upper clay layer with limited percolation capacity, and lack of practical knowledge on MAR. Therefore, overcoming the challenges for MAR application is a prerequisite to maximize the opportunities from MAR that can support the sustainable use of groundwater resources.

Highlights

  • Water is the most valuable gift of nature

  • Almost 66.7% of the fresh water is in the form of ice caps and glaciers and about 30.1% exists below the surface as groundwater

  • Barind tract made up of Pleistocene Alluvium is known as Older Alluvium and floored by reddish, brown, sticky Pleistocene sediment, Madhupur Clay (Ahmed 2006)

Read more

Summary

Introduction

Water is the most valuable gift of nature. its distribution on the Earth's surface is extremely uneven. Information about surface water quality, sedimentation on the canal bed as well as the clogging of top layer of the MAR unit by the silty clay have been observed. The modified MAR model performs better for recharging groundwater using conserved storm water in the Khari of Barind tract (Hossain et al 2020).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.