Abstract

High-speed downlink packet access (HSDPA) achieves high data rates and high spectral efficiency by using adaptive modulation and coding schemes and employing multicode CDMA. In this paper, we present opportunistic algorithms for scheduling HSDPA users and selecting modulation/coding and multicode schemes that exploit channel and buffer variations to increase the probability of uninterrupted media play-out. First, we introduce a stochastic discrete event model for a HSDPA system. By employing the discrete event model, we transform the scheduling problem of providing uninterrupted play-out to a feasibility problem that considers two sets of stochastic quality-of-service (QoS) constraints: stability constraints and robustness constraints. A methodology for obtaining a feasible solution is then proposed by starting with a so-called stable algorithm that satisfies the stability QoS constraints. Next, we present stochastic approximation algorithms that adapt the parameters of the stable algorithm in a way that a feasible point for the robustness QoS is reached within the feasibility region of the stability QoS

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.