Abstract
We show that operators on a separable infinite dimensional Banach space $X$ of the form $I +S$, where $S$ is an operator with dense generalised kernel, must lie in the norm closure of the hypercyclic operators on $X$, in fact in the closure of the mixing operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Royal Irish Academy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.