Abstract
We prove that if X is a separable infinite dimensional Banach space then its isomorphism class has infinite diameter with respect to the Banach-Mazur distance. One step in the proof is to show that if X is elastic then X contains an isomorph of c0. We call X elastic if for some K < ?? for every Banach space Y which embeds into X, the space Y is K-isomorphic to a subspace of X. We also prove that if X is a separable Banach space such that for some K <?? every isomorph of X is K-elastic then X is finite dimensional.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.