Abstract

AbstractLet G be a locally compact group, and let Acb(G) denote the closure of A(G), the Fourier algebra of G, in the space of completely boundedmultipliers of A(G). If G is a weakly amenable, discrete group such that C*(G) is residually finite-dimensional, we show that Acb(G) is operator amenable. In particular, Acb() is operator amenable even though , the free group in two generators, is not an amenable group. Moreover, we show that if G is a discrete group such that Acb(G) is operator amenable, a closed ideal of A(G) is weakly completely complemented in A(G) if and only if it has an approximate identity bounded in the cb-multiplier norm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.