Abstract

Let denote the field of algebraic numbers in A discrete group G is said to have the σ-multiplier algebraic eigenvalue property, if for every matrix A ∈ M d ((G, σ)), regarded as an operator on l 2(G)d, the eigenvalues of A are algebraic numbers, where σ ∈ Z 2(G, ) is an algebraic multiplier, and denotes the unitary elements of . Such operators include the Harper operator and the discrete magnetic Laplacian that occur in solid state physics. We prove that any finitely generated amenable, free or surface group has this property for any algebraic multiplier σ. In the special case when σ is rational (σ n=1 for some positive integer n) this property holds for a larger class of groups containing free groups and amenable groups, and closed under taking directed unions and extensions with amenable quotients. Included in the paper are proofs of other spectral properties of such operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.