Abstract

The ever-increasing power conversion efficiency of perovskite solar cells has illuminated the future of the photovoltaic industry, but the development of commercial devices is hampered by their poor stability. In this study, we report a scalable stabilization method using vapor-phase fluoride treatment, which achieves 18.1%-efficient solar modules (228 square centimeters) with accelerated aging-projected T80 lifetimes (time to 80% of efficiency remaining) of 43,000 ± 9000 hours under 1-sun illumination at 30°C. The high stability results from vapor-enabled homogeneous fluorine passivation over large-area perovskite surfaces, suppressing defect formation energy and ion diffusion. The extracted degradation activation energy of 0.61 electron volts for solar modules is comparable to that of most reported stable cells, which indicates that modules are not inherently less stable than cells and closes the cell-to-module stability gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.