Abstract

The SUNY solar irradiance forecast model is implemented in the SolarAnywhere platform. In this article, we evaluate its latest version and present a fully independent validation for climatically distinct individual US locations as well as one extended region. In addition to standard performance metrics such as mean absolute error or forecast skill, we apply a new operational metric that quantifies the lowest cost of operationally achieving perfect forecasts. This cost represents the amount of solar production curtailment and backup storage necessary to correct all over/under-prediction situations. This perfect forecast metric applies a recently developed algorithm to optimally transform intermittent renewable power generation into firm power generation with the optimal - least-cost – amount of curtailment and energy storage. We discuss how perfect forecast logistics can gradually evolve and scale up into firm solar power generation logistics, with the objective of cost-optimally displacing conventional [dispatchable] power generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.