Abstract

We show how to construct general probabilistic theories that contain an energy observable dependent on position and momentum. The construction is in accordance with classical and quantum theory and allows for physical predictions, such as the probability distribution for position, momentum, and energy. We demonstrate the construction by formulating a toy model for the harmonic oscillator that is neither classical nor quantum. The model features a discrete energy spectrum, a ground state with sharp position and momentum, an eigenstate with a nonpositive Wigner function as well as a state that has tunneling properties. The toy model demonstrates that operational theories can be a viable alternative approach for formulating physical theories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.