Abstract

In this study, we investigated the long-term stability of anion exchange membrane water electrolyzers (AEMWEs) under various bias conditions. The cell performance was relatively stable under conditions of voltage cycling in a narrow range, constant voltage and constant current. On the other hand, a relatively dynamic condition, voltage cycling, in a wide range detrimentally affected the cell stability. Abnormally high negative and positive currents were observed when the cell voltage was switched between 2.1 and 0 V. Impedance results and post-material analyses indicated that the performance degradation was mainly due to anode catalyst detachments, which increased non-ohmic resistance in the wide range voltage cycling. An increase in ohmic resistance was also observed, which was due to the membrane dehydration that occurred in the frequent rest times. Thus, it can be said that the voltage cycling range as well as the frequency of rest times are critical operational parameters in determining the long-term stability of AEMWEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.