Abstract

Two different operational interpretations of intuitionistic linear logic have been proposed in the literature. The simplest interpretation recomputes non-linear values every time they are required. It has good memory-management properties, but is often dismissed as being too inefficient. Alternatively, one can memoize the results of evaluating non-linear values. This avoids any recomputation, but has weaker memory-management properties. Using a novel combination of type-theoretic and operational techniques we give a concise formal comparison of the two interpretations. Moreover, we show that there is a subset of linear logic where the two operational interpretations coincide. In this subset, which is sufficiently expressive to encode call-by-value lambda-calculus, we can have the best of both worlds: a simple and efficient implementation, and good memory-management properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.