Abstract
We revisit the problem of asymmetric binary hypothesis testing against a composite alternative hypothesis. We introduce a general framework to treat such problems when the alternative hypothesis adheres to certain axioms. In this case we find the threshold rate, the optimal error and strong converse exponents (at large deviations from the threshold) and the second-order asymptotics (at small deviations from the threshold). We apply our results to find operational interpretations of Renyi information measures. In particular, in case the alternative hypothesis consists of certain tripartite distributions satisfying the Markov property, we find that the optimal exponents are determined by the Renyi conditional mutual information.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have