Abstract

The displacement of clouds in successive satellite images reflects the atmospheric circulation at various scales. The main application of the satellite-derived cloud-motion vectors is their use as winds in the data analysis for numerical weather prediction. At low latitudes in particular they constitute an indispensible data source for numerical weather prediction. This paper describes the operational method of deriving cloud-motion winds (CMW) from the IR image (10.5–12.5 µm) of the European geostationary Meteostat satellites. The method is automatic, that is, the cloud tracking uses cross correlation and the height assignment is based on satellite observed brightness temperature and a forecast temperature profile. Semitransparent clouds undergo a height correction based on radiative forward calculations and simultaneous radiance observations in both the IR and water vapor (5.7–7.1 µm) channel. Cloud-motion winds are subject to various quality checks that include manual quality control as the last step. Typically about 3000 wind vectors are produced per day over four production cycles. This paper documents algorithm changes and improvements made to the operational CMWs over the last five years. The improvements are shown by long-term comparisons with both collocated radiosondes and the first guess of the forecast model of the European Centre for Medium-Range Weather Forecasts. In particular, the height assignment of a wind vector and radiance filtering techniques preceding the cloud tracking have ameliorated the errors in Meteostat winds. The slow speed bias of high-level CMWs (<400 hPa) in comparison to radiosonde winds have been reduced from about 4 to 1.3 m s−1 for a mean wind speed of 24 m s−1. Correspondingly, the rms vectors error of Meteosat high-level CMWs decreased from about 7.8 to 5 m s−1. Medium- and low-level CMWs were also significantly improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.