Abstract

We investigated the operational characteristics of the hybrid-type superconducting fault current limiter (SFCL) with the closed and the open cores, which induced the variation of the magnetic flux between the primary and the secondary windings. The experimental set-up of the hybrid-type SFCL with the closed and the open cores were prepared and the experimental analyses for the current limiting characteristics were performed. The peak value of the fault current in the hybrid-type SFCL with the open core was higher than that of the closed core at the first cycle after fault occurrence. However, in the case of the hybrid-type SFCL with the open core, the limiting current level after fault occurrence was decreased less than that of the hybrid-type SFCL with the closed core, because the magnetic leakage reluctance of the open core was higher than that of the closed core. The quench time (Tq) and the arrival time (Ta) for the peak voltage (VSC) in the hybrid-type SFCL with the closed core were faster than that of the hybrid-type SFCL with the open core due to the increase of the mutual flux. We verified that the consumption power in the hybrid-type SFCL with the open core was larger owing to the increase of leakage flux by the reduction of mutual inductance between primary and secondary windings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.