Abstract
Recently, multi-terminal DC (MTDC) system has received more attention in the power transmission areas. Development of modular structured power converter topologies has now enabled the power converter technology to attain high voltage high power ratings. Compared to current source converter technology, voltage source converters have several benefits including higher power quality, independent control of active and reactive power etc. This paper focuses on a unique MTDC system consisting of terminals with different converter topologies especially considering the fact that each of the terminals may be manufactured by different vendors. In this particular configuration, the MTDC system consists of four terminals namely two advanced modular multi-level converter with high frequency isolation, one standard modular multi-level converter (MMC) with half bridge sub modules and the fourth terminal is modular DC-DC converter which integrates PV along with a Battery energy storage system with the DC grid directly. This paper presents a system level study of hybrid MTDC System. Also the DC fault contingency case has been explored thoroughly. An algorithm has been proposed to prevent the system damage. All the cases have been demonstrated with the PSCAD simulation results. To show the system practically works in real time, the system is also evaluated in a unique real time platform, consisting of interconnected RTDS and OPAL RT systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.