Abstract

Modern irrigation techniques involve large spatial and temporal demand variations in distribution networks. This makes the flow unsteady and generates perturbations that travel upstream along the network. Perturbations can also be generated by variable water inflows. This is the case when water is pumped into the network under variable energy rates, generating perturbations that travel downstream on the network. The passive canal control is a design criteria and a flow distribution method that make most of the storage capacity needed in any irrigation project, in order to mitigate the perturbations coming from both directions. In this paper, the passive canal control is applied to the design and operation of the Xerta-Senia Canal Irrigation Project considering an unsteady free-surface flow model. The key aspect of the project is the location of irrigation reservoirs in-line with the canals at the same level, allowing water flow from canals to reservoir and vice versa. Three performance scenarios are evaluated, and the results of a simulation model are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.