Abstract
The operating mode is an essential factor affecting product quality and yield of the sinter ore, which inspires the realization of operating mode recognition. Taking burn-through point (BTP) as the decision parameter of operating mode, an operating mode recognition method based on the fluctuation interval prediction is presented. First, combining the principal component analysis and the fuzzy information granulation method, a fluctuation interval prediction model of the BTP is established through utilizing the Elman neural network. Then, the operating mode classification rules are built according to the data distribution of the BTP in the fluctuation interval. Finally, experiments are executed with the data collected from a factory. The results indicate that it can effectively predict the fluctuation interval of the BTP, and then successfully recognize the operating mode. In this article, the proposed method provides a valid reference to control the stable operation of the iron ore sintering process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have