Abstract
Extracellular-signal regulated protein kinase (ERK1/2) is activated by ethanol in reward-related brain regions. Accordingly, systemic inhibition of ERK1/2 potentiates ethanol reinforcement. However, the brain region(s) that mediate this effect are unknown. This study aims to pharmacologically inhibit ERK1/2 in the medial prefrontal cortex (PFC), nucleus accumbens (NAC), and amygdala (AMY) prior to ethanol or sucrose self-administration, and evaluate effects of operant ethanol self-administration on ERK1/2 phosphorylation (pERK1/2). Male C57BL/6J mice were trained to lever press on a fixed-ratio-4 schedule of 9% ethanol + 2% sucrose (ethanol) or 2% sucrose (sucrose) reinforcement. Mice were sacrificed immediately after the 30th self-administration session and pERK1/2 immunoreactivity was quantified in targeted brain regions. Additional groups of mice were injected with SL 327 (0-1.7 μg/side) in PFC, NAC, or AMY prior to self-administration. pERK1/2 immunoreactivity was significantly increased by operant ethanol (g/kg = 1.21 g/kg; BAC = 54.9 mg/dl) in the PFC, NAC (core and shell), and AMY (central nucleus) as compared to sucrose. Microinjection of SL 327 (1.7 μg) into the PFC selectively increased ethanol self-administration. Intra-NAC injection of SL 327 had no effect on ethanol- but suppressed sucrose-reinforced responding. Intra-AMY microinjection of SL 327 had no effect on either ethanol- or sucrose-reinforced responding. Locomotor activity was unaffected under all conditions. Operant ethanol self-administration increases pERK1/2 activation in the PFC, NAC, and AMY. However, ERK1/2 activity only in the PFC mechanistically regulates ethanol self-administration. These data suggest that ethanol-induced activation of ERK1/2 in the PFC is a critical pharmacological effect that mediates the reinforcing properties of the drug.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have