Abstract

AbstractThe oxygen evolution reaction (OER) acts as the bottleneck of some crucial energy conversion and storage technologies involving water electrolysis, CO2 electrolysis, and metal‐air batteries, among others. The challenging sluggish reaction kinetics of the OER can be overcome via developing highly efficient electrocatalysts, which experience a dynamic structural evolution process during the reaction. However, the reaction mechanism of the structural transformation of electrocatalysts during the OER and the structure‐activity correlation in understanding the real active sites remain elusive. Fortunately, operando characterizations offer a platform to study the structural evolution processes and the reaction mechanisms of OER electrocatalysts. In this review, using several in situ/operando techniques some recent advances are elaborated with emphases on tracking the structural evolution processes of electrocatalysts, recording the reaction intermediates during electrocatalysis, and building a link between the structure and activity/stability of electrocatalysts. Moreover, theoretical considerations are also discussed to assist operando characterization understanding. Finally, some perspectives are provided which are expected to be helpful to tackle the current challenges in operando monitoring and unraveling the reaction mechanisms of OER electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.