Abstract

While artificial 3D nanostructures can generate precise and flexible coloration, their real-time color changes during 3D nanoprinting remain unexplored owingto the inherent challenges of in situ transient measurements and observations. In this study, a 3D-printing system which supports the operando observation/measurement of the color dynamics of subwavelength metallic nanoarchitectures fabricated in real time is developed and evaluated. During 3D printing, the dimensions and geometries of the 3D nanostructures grow over time, producing a large library of optical spectra associated with real-time color changes. Only a timer is needed to define the expected colors from a single 3D print run. Fin-like nanostructures are used to toggle colors based on the polarization effect and produce color gradients. Based on structural coloration, nanoarchitectures are designed and printed to animate desired color patterns. Moreover, the resulting color dynamics can also serve as an operando identifier for real-time structural information during 3D nanoprinting. A single print run enables the efficient creation of a comprehensive library of desired colorations owing to the flexibility in time-dependent controllability and 3D geometries at the subwavelength scale. 3D nanoprinted plasmonic structures exhibiting time-varying colorations (4D printing of colors) uniquely redefines the coloring stategy,offering considerable potential for numerousapplications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.