Abstract

AbstractLPI radar signal recognition based on convolutional neural networks usually assumes that the signal to be recognized belongs to a closed set of known signal classes. In an open electromagnetic signal environment, this type of closed‐set recognition method will experience a drastic drop in performance due to the encounter with unknown types of signals. We propose an SCNN‐SVDD model based on a combination of a lightweight convolutional neural network and a support vector data description algorithm to achieve open‐set recognition of LPI radar signals under unknown signal conditions. In this approach, Choi‐William's time‐frequency distribution is used to obtain two‐dimensional time‐frequency images of the signal to be identified, and convolutional neural networks are used to achieve high‐precision classification of known signals and extract the corresponding feature vectors. Then, the feature vectors are used as input to the SVDD algorithm and a hypersphere is constructed to detect whether the signal to be identified belongs to a known class. Experimental results show that the proposed method can detect unknown signals while maintaining high recognition accuracy for known signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.