Abstract
As the real electromagnetic environment grows complex and the quantity of radar signals turns massive, traditional methods, which require a large amount of prior knowledge, are time-consuming and ineffective for radar emitter signal recognition. In recent years, convolutional neural network (CNN) has shown its superiority in recognition so that experts have applied it in radar signal recognition. However, in the field of radar emitter signal recognition, the data are usually one-dimensional (1-D), which takes more time and storage space than by using the original two-dimensional CNN model directly. Moreover, the features extracted from convolutional layers are redundant so that the recognition accuracy is low. In order to solve these problems, this paper proposes a novel one-dimensional convolutional neural network with an attention mechanism (CNN-1D-AM) to extract more discriminative features and recognize the radar emitter signals. In this method, features of the given 1-D signal sequences are extracted directly by the 1-D convolutional layers and are weighted in accordance with their importance to recognition by the attention unit. The experiments based on seven different radar emitter signals indicate that the proposed CNN-1D-AM has the advantages of high accuracy and superior performance in radar emitter signal recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.