Abstract

Two developments in computational text analysis may change the way qualitative data analysis in social sciences is performed: 1. the availability of digital text worth to investigate is growing rapidly, and 2. the improvement of algorithmic information extraction approaches, also called text mining, allows for further bridging the gap between qualitative and quantitative text analysis. The key factor hereby is the inclusion of context into computational linguistic models which extends conventional computational content analysis towards the extraction of meaning. To clarify methodological differences of various computer-assisted text analysis approaches the article suggests a typology from the perspective of a qualitative researcher. This typology shows compatibilities between manual qualitative data analysis methods and computational, rather quantitative approaches for large scale mixed method text analysis designs. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1302231

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.