Abstract
AbstractThe development of two‐dimensional (2D) materials is experiencing a renaissance since the adventure of graphene. 2D materials typically exhibit strong in‐plane covalent bonding and weak out‐of‐plane van der Waals interactions through the interlayer gap. Opening 2D materials is an effective way to alter the physical and chemical properties, such as band gap, conductivity, optical property, thermoelectric property, photovoltaic property and superconductivity. A larger interlayer distance means more accessible active sites for catalysis, an ion‐accessible surface in the interlayer space, which may greatly enhance the performance of 2D materials for energy conversion and storage. Moreover, opening 2D materials by intercalation can change the band filling state and the Fermi level. This review mainly focuses on the opening of 2D materials and their subsequent applications in energy conversion and storage fields, expecting to promote the development of such a new class of materials, namely expanded 2D materials. The exciting progresses of these expanded materials made in both energy conversion and storage devices including solar cells, thermoelectric devices, electrocatalyst, supercapacitors and rechargeable batteries, is presented and discussed in depth. Furthermore, prospects and further developments in these exciting fields of the expanded 2D materials are also commented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.