Abstract

This paper presents the implementation of an algebraic frosting model into a general-purpose Navier-Stokes computational fluid dynamics (CFD) solver. The selected frosting model, derived from the energy and mass conservation equations, is used to predict the growth of the frost zone in space and time, and the resulting modification of the local flow characteristics within the non-frosted part of the domain. This implementation is used for a CFD analysis of the frosting behavior of a heat pump evaporator (represented through all relevant geometrical features) under realistic operating conditions. The obtained simulation results are compared with the findings of the experimental investigation of the fin-and-tube heat exchanger frosting, coming from the air-to-water heat pump measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.