Abstract

Fast imaging methods are needed to promote clinical adoption of ultrasound tomography (UST), and more widely available UST hardware could support the experimental validation of new measurement configurations. In this work, an open-source 256-element transducer ring array was developed (morganjroberts.github. io/open-UST) and manufactured using rapid prototyping, for only £2k. Novel manufacturing techniques were used, resulting in a 1.17° mean beam axis skew angle, a [Formula: see text] mean element position error, and a [Formula: see text] deviation in matching layer thickness. The nominal acoustic performance was measured using hydrophone scans and watershot data, and the 61.2 dB signal-to-noise ratio (SNR), 55.4° opening angle, 10.2 mm beamwidth, and 54% transmit-receive bandwidth (-12 dB) were found to be similar to existing systems and compatible with state-of-the-art full-waveform-inversion image reconstruction methods. The interelement variation in acoustic performance was typically < 10% without using normalization, meaning that the elements can be modeled identically during image reconstruction, removing the need for individual source definitions based on hydrophone measurements. Finally, data from a phantom experiment were successfully reconstructed. These results demonstrate that the open-UST system is accessible for users and is suitable for UST imaging research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.