Abstract

Specific algorithms are developed to solve the equations that define the physical dimensions under various conditions. In this sense, the storm index method was incorporated for the variable precipitation intensity, expanding the number of rainfall stations with the intensity duration frequency (IDF) curves from 9 to 31 within the considered territory (the Biobio Region of Central Chile). Likewise, the infiltration values and runoff coefficients necessary for calculating the dimensions of the trenches were obtained using the Python programming language. The results show that an open-source Python solution allows high reliability and efficiency based on the tests developed. For this reason, this prototype is expected to add new mathematical expressions that may arise to better account for an efficient design of soil and water conservation works or infiltration trenches. In this way, it is concluded that it is possible to develop simulation models for the efficient design of trenches based on well-defined and limited theoretical modeling, adding to computer language tools. This allows for a virtuous synergy that can help address efficient public policies to conserve soil and water in Chile and elsewhere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call