Abstract

The fifth-generation cellular networks (5G) has been proposed as a solution for the accelerating growth in data traffic. As part of 5G, millimeter-wave (mmWave) is suggested as one of the potential spectrum candidates due to the vastly available bandwidth. Accordingly, both indoor and outdoor propagation measurements on mmWave have been widely conducted over the recent years. These field measurements were heavily dependent on utilizing expensive channel-sounders and tools. In this paper, we propose an affordable and open-source test-bed solution for mmWave channel modeling covering 24 and 77 GHz bands. The key contribution in the proposed test-bed is the use of cost-effective mmWave Doppler radars, a specific methodology is developed for this purpose. The proposed test-bed is capable of resolving the received power at any given combination of angles-of-arrival (AoA) and angles-of-departure (AoD). In order to verify the functionality of the proposed test bed, several measurement scenarios have been investigated in different indoor environments, the obtained propagation results using this test bed indicate a good consistency with the expected mmWave propagation characteristics. As the proposed test bed is an open source and cost-effective, researchers and RF designers can easily conduct mmWave propagation measurements according to their particular needs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call