Abstract

Complex large-scale cyber-physical systems, such as electric power grids, oil & gas pipeline systems, transportation systems, etc. are critical infrastructures that provide essential services for the entire nation. In order to improve systems' security and resilience, researchers have developed many Supervisory Control and Data Acquisition (SCADA) test beds for testing the compatibility of devices, analyzed the potential cyber threats/vulnerabilities, and trained practitioners to operate and protect these critical systems. In this paper, we describe a new test bed architecture for modeling and simulating power system related research. Since the proposed test bed is purely software defined and the communication is emulated, its functionality is versatile. It is able to reconfigure virtual systems for different real control/monitoring scenarios. The unified architecture can seamlessly integrate various kinds of system-level power system simulators (real-time/non real-time) with the infrastructure being controlled or monitored with multiple communication protocols. We depict the design methodology in detail. To validate the usability of the test bed, we implement an IEEE 39-bus power system case study with a power flow analysis and dynamics simulation mimicking a real power utility infrastructure. We also include a cascading failure example to show how system simulators such as Power System Simulator for Engineering (PSS/E), etc. can seamlessly interact with the proposed virtual test bed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.