Abstract

Three-dimensional block models are the most frequently used tool for estimating mineral resources and reserves within a mineral deposit. In open pit mining, the basis of mine design and the long term mining schedule is calculation of the ultimate pit limit. The ultimate pit limit is the pit with the highest profit value. Over the years, different algorithms have been developed that enable us to calculate the final pit: floating or mobile cone, floating cone II and its corrected forms, floating cone III, the Korobov algorithm and its corrected form, the Lerchs–Grossmann 2D algorithm (dynamic programming), and the Lerchs–Grossmann 3D algorithm (graph theory). All these algorithms have advantages and disadvantages. The floating cone method stands out for its simplicity, speed, and easy implementation, even for calculating a pit with a variable slope angle. The main drawback of this method is that it is unable to examine all possible combinations. For this reason, the algorithm does not consistently give optimal results, which is why it has required improvements over time. However, the improved methods still have some problems. To overcome these problems, a new algorithm called the floating cone IV method will be demonstrated in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.