Abstract

In this paper we reconsider Nash equilibria for the affine linear quadratic differential game for an infinite planning horizon. We consider an open-loop information structure. In the standard literature this problem is solved under the assumption that every player can stabilize the system on his own. In this note we relax this assumption and provide both necessary and sufficient conditions for the existence of Nash equilibria for this game under the assumption that the system as a whole is stabilizable. Basically, it is shown that to see whether equilibria exist for all initial states one has to restrict the analysis to the controllable modes of the different players.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.