Abstract

We present existence and uniqueness results for a hierarchical or Stackelberg equilibrium in a two-player differential game with open-loop information structure. There is a known convexity condition ensuring the existence of a Stackelberg equilibrium, which was derived by Simaan and Cruz (Ref. 1). This condition applies to games with a rather nonconflicting structure of their cost criteria. By another approach, we obtain here new sufficient existence conditions for an open-loop equilibrium in terms of the solvability of a terminal-value problem of two symmetric Riccati differential equations and a coupled system of Riccati matrix differential equations. The latter coupled system appears also in the necessary conditions, but contrary to the above as a boundary-value problem. In case that the convexity condition holds, both symmetric equations are of standard type and admit globally a positive-semidefinite solution. But the conditions apply also to more conflicting situations. Then, the corresponding Riccati differential equations may be of H?-type. We obtain also different uniqueness conditions using a Lyapunov-type approach. The case of time-invariant parameters is discussed in more detail and we present a numerical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.