Abstract
<p style='text-indent:20px;'>In this paper, we study a general mean-variance reinsurance, new business and investment problem, where the claim processes of original and new businesses are modeled by two different risk processes and the safety loadings of reinsurance and new business are different. The retention level of the insurer is constrained in <inline-formula><tex-math id="M1">\begin{document}$ [0,1] $\end{document}</tex-math></inline-formula> and the controls of new business and risky investment are required to be non-negative. This model relaxes the limitations of those in existing research. By using the projection onto the convex set controls valued in, we obtain an open-loop equilibrium reinsurance-new business-investment strategy explicitly. We also show that the obtained equilibrium strategy is the optimal one among all deterministic strategies in the sense that it yields the smallest mean-variance cost. In the case where original and new businesses are the same, the equilibrium strategy is given in closed-form and its sensitivities to safety loadings are shown by numerical examples. At last, by comparing with the case where acquiring new business is prohibited, we show that allowing writing new policies indeed improves the performance of the insurer's risk management.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.