Abstract

A comprehensive understanding of how the brain responds to a changing environment requires techniques capable of recording functional outputs at the whole-brain level in response to external stimuli. Positron emission tomography (PET) is an exquisitely sensitive technique for imaging brain function but the need for anaesthesia to avoid motion artefacts precludes concurrent behavioural response studies. Here, we report a technique that combines motion-compensated PET with a robotically-controlled animal enclosure to enable simultaneous brain imaging and behavioural recordings in unrestrained small animals. The technique was used to measure in vivo displacement of [11C]raclopride from dopamine D2 receptors (D2R) concurrently with changes in the behaviour of awake, freely moving rats following administration of unlabelled raclopride or amphetamine. The timing and magnitude of [11C]raclopride displacement from D2R were reliably estimated and, in the case of amphetamine, these changes coincided with a marked increase in stereotyped behaviours and hyper-locomotion. The technique, therefore, allows simultaneous measurement of changes in brain function and behavioural responses to external stimuli in conscious unrestrained animals, giving rise to important applications in behavioural neuroscience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.