Abstract
One of the strategies in the treatment of Alzheimer’s disease is the use of drugs that enhance cholinergic brain function, since it is believed that cholinergic dysfunction is one of the factors that contributes to cognitive deterioration. Positron emission tomography is a medical imaging method that can be used to measure the concentration, kinetics, and distribution of cholinergic-enhancing drugs directly in the human brain and assess the effects of the drugs at markers of cholinergic cell viability (vesicular transporters, acetylcholinesterase), at muscarininc and nicotinic receptors, at extracellular acetylcholine, at markers of brain function (glucose metabolism and blood flow), and on amyloid plaque burden in vivo in the brains of patients with Alzheimer’s disease. In addition, these measures can be applied to assess the drugs’ pharmacokinetic and pharmacodynamic properties in the human brain. Since the studies are done in living human subjects, positron emission tomography can evaluate the relationship between the drugs’ biological, behavioral, and cognitive effects; monitor changes in brain function in response to chronic treatment; and determine if pharmacologic interventions are neuroprotective. Moreover, because positron emission tomography has the potential to identify Alzheimer’s disease during early disease, it can be used to establish whether early interventions can prevent or delay further development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.