Abstract
Our present study focused on the regulating effect of oolong tea polyphenols (OTPs) on the circadian rhythm of liver and intestinal microbiome. OTP significantly alleviated the disrupted diurnal oscillation and phase shift of the specific intestinal microbiota and liver clock genes in mice induced by constant dark (CD) treatment. Transcriptomics revealed that 1114 genes in the control group and 647 genes in the CD group showed circadian rhythm while 723 genes were rhythmic in the CD-OTP group. The Gene Ontology (GO) database provided significant differences in differentially expressed genes (DEGs) in response to OTP treatment. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched the most DEGs after OTP intervention including "Focal adhesion" (9 DEGs) and "PI3K-Akt signaling pathway" (9 DEGs). The present study provided a global view that OTP may alleviate the circadian rhythm disorder of the host, contributing to the improvement of microecology and health.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.