Abstract
Several frameworks for robot control platforms have been developed in recent years. However, strategies that incorporate automatic replanning have to be explored, which is a requirement for Autonomous Robotic Systems (ARS) to be widely adopted. Ontologies can play an essential role by providing a structured representation of knowledge. This paper proposes a new framework capable of replanning high-level tasks in failure situations for ARSs. The framework utilizes an ontology-based reasoning engine to overcome constraints and execute tasks through Behavior Trees (BTs). The proposed framework was implemented and validated in a real experimental environment using an Autonomous Mobile Robot (AMR) sharing a plan with a human operator. The proposed framework uses semantic reasoning in the planning system, offering a promising solution to improve the adaptability and efficiency of ARSs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have