Abstract

Lake trout Salvelinus namaycush in nearshore waters of Lake Michigan grow faster than lake trout residing offshore on Sheboygan Reef, which is in midlake. We examined the stomachs of lake trout, spanning ages 1 through 16, caught in both nearshore and offshore environments of Lake Michigan during 1994 and 1995 to determine whether diet differences may be responsible for the difference in growth rate. A comparison of the diets, coupled with bioenergetics modeling, indicated that juvenile lake trout on Sheboygan Reef experienced slow growth due to low food availability rather than to cold water temperatures. The availability of appropriate-size prey appeared to regulate lake trout growth. Small prey fish were probably not readily available to small (200- to 399-mm total length) lake trout on Sheboygan Reef, a substantial portion of whose diet consisted of invertebrates; in contrast, nearshore juveniles had a nearly 100% fish diet. Growth rate on the reef remained slow through intermediate lake trout sizes (400–599 mm total length), presumably due to low availability of rainbow smelt Osmerus mordax on the reef. Once lake trout achieved total lengths of approximately 600 mm, they grew slightly faster on Sheboygan Reef than near shore, indicating that large (>170-mm total length) prey fish were readily available to lake trout in the reef area. On a wet-weight basis, alewife Alosa pseudoharengus dominated the diet of large (≥600 mm total length) lake trout from both the nearshore and offshore regions of the lake, although bloater Coregonus hoyi composed over 30% of the diet on Sheboygan Reef and in southeastern nearshore Lake Michigan. Size of alewife prey increased with lake trout size. The bloater population currently represents the bulk of the biomass of the adult prey fish community, so our diet analysis suggests that large lake trout are continuing to select alewives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.